Révisions & Oraux ; Série N°4

Exercice 1 Donner le $DL_6(0)$ de cosh, sin et $x \mapsto \sqrt{1-x^3}$, et le $DL_2(1)$ de $\sqrt{1-x^3}$

Exercice 2 [CCP MP] Soit $n \ge 2$ et $z = e^{i\frac{2\pi}{n}}$.

- 1. Pour $k \in [1, n-1]$, module et argument de z^k-1 .

 2. Montrer que $\sum_{k=0}^{n-1} |z^k-1| = \frac{2}{\tan \frac{\pi}{2n}}$.

Exercice 3 [Centrale PSI] Soit $E = \mathcal{C}^0([0,1],\mathbb{R})$. Pour $f \in E$, on pose T(f)(0) = f(0) et pour $0 < x \le 1$, $T(f)(x) = \frac{1}{x} \int_0^x f(t) \, \mathrm{d}t$.

- 1. Montrer que T est un endomorphisme de E. Est-il injectif? surjectif?
- 2. Soient $f,g \in E$. On pose $F \colon x \mapsto x \int_0^x f(t)g(t) \, \mathrm{d}t \int_0^x f(t) \, \mathrm{d}t \int_0^x g(t) \, \mathrm{d}t$.
 - a) Montrer que F est de classe C^1 et écrire F' sous la forme d'une intégrale.
 - b) Montrer que si f, g sont monotones de même sens de variation, alors $T(fg) \ge T(f)T(g)$.

Exercice 4 [IMT MP] Soit $A = (\sin(i+j))_{1 \le i, j \le n}$. En considérant $X = (\cos(i))_{1 \le i \le n}$ et $Y = (\sin(i))$, calculer rang A et $\det A$.

Exercice 5 [CCP MP] Soit E un espace vectoriel et p, q deux projecteurs de E tels que $\operatorname{Im} p \subset \operatorname{Ker} q$.

- 1. Montrer que Im $p \cap \text{Im } q = \{\vec{0}\}.$
- 2. Soit $r=p+q-p\circ q$. Montrer que r est un projecteur sur $\operatorname{Im} p+\operatorname{Im} q$ parallèlement à $\operatorname{Ker} p\cap \operatorname{Ker} q$.

Exercice 6 Soient X, Y deux variables aléatoires d'images finies dans \mathbb{R} . On suppose que pour tout $k \in \mathbb{N}$, $E(X^k) = E(Y^k)$. Montrer que X et Y suivent la même loi.

Exercice 7 [Mines MP 2024] Soit $\alpha=e^{i\theta}$ un nombre complexe de module 1. Calculer $\prod_{k=0}^n (\alpha^{2^k}+\overline{\alpha}^{2^k})$.

Exercice 8 [Centrale MP 2024] 1. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^1 . On suppose que f admet un extremum en $a \in \mathbb{R}^n$. Rappeler la valeur de $\nabla f(a)$ (avec demonstration).

- 2. Soit $\theta \in [0, \pi]$. Soient A et B du cercle unité de \mathbb{R}^2 tels que $(\widehat{OA}, \widehat{OB}) = \theta$. Exprimer l'aire de la lunule constituée des points extérieurs au disque unité et intérieurs au disque de diamêtre [AB].
- 3. Soient A, B et C trois points du cercle unité tels que les trois angles $(\overrightarrow{OA}, \overrightarrow{OB}), (\overrightarrow{OB}, \overrightarrow{OC})$ et $(\overrightarrow{OC}, \overrightarrow{OA})$ soient dans $[0, \pi]$. Maximiser la somme des aires des trois lunules qu'ils définissent.

Exercice 9 [ENS MP 2024] 1. Montrer que toute rotation du plan est composée de deux symétries axiales.

- 2. Montrer que toute permutation d'un ensemble fini non vide X est produit de deux éléments d'ordre au plus 2 du groupe des permutations de X.
- 3. Le résultat de la question précédente subsiste-t-il si *X* est infini?

Exercice 10 [ENS MP 2024] On étend naturellement la valuation 2-adique v_2 à \mathbb{Q}^* . Calculer $v_2(H_n)$, où H_n est la série harmonique.

Révisions & Oraux ; Série N°4

Exercice 1 Donner le $DL_6(0)$ de \cosh , sin et $x \mapsto \sqrt{1-x^3}$, et le $DL_2(1)$ de $\sqrt{1-x^3}$

Exercice 2 [CCP MP] Soit $n \ge 2$ et $z = e^{i\frac{2\pi}{n}}$.

1. Pour $k \in [1, n-1]$, module et argument de z^k-1 . 2. Montrer que $\sum_{k=0}^{n-1} |z^k-1| = \frac{2}{\tan\frac{\pi}{n-1}}$.

Exercice 3 [Centrale PSI] Soit $E = \mathcal{C}^0([0,1],\mathbb{R})$. Pour $f \in E$, on pose T(f)(0) = f(0) et pour $0 < x \le 1$, $T(f)(x) = \frac{1}{x} \int_0^x f(t) dt$.

- 1. Montrer que T est un endomorphisme de E. Est-il injectif? surjectif?
- 2. Soient $f, g \in E$. On pose $F: x \mapsto x \int_0^x f(t)g(t) dt \int_0^x f(t) dt \int_0^x g(t) dt$.
 - a) Montrer que F est de classe C^1 et écrire F' sous la forme d'une intégrale.
 - b) Montrer que si f,g sont monotones de même sens de variation, alors $T(fg) \geq T(f)T(g)$.

Exercice 4 [IMT MP] Soit $A = (\sin(i+j))_{1 \le i,j \le n}$. En considérant $X = (\cos(i))_{1 \le i \le n}$ et $Y = (\sin(i))$, calculer rang A et $\det A$.

Exercice 5 [CCP MP] Soit E un espace vectoriel et p, q deux projecteurs de E tels que Im $p \subset \text{Ker } q$.

- 1. Montrer que $\operatorname{Im} p \cap \operatorname{Im} q = \{\vec{0}\}.$
- 2. Soit $r=p+q-p\circ q$. Montrer que r est un projecteur sur $\operatorname{Im} p+\operatorname{Im} q$ parallèlement à $\operatorname{Ker} p\cap \operatorname{Ker} q$.

Exercice 6 Soient X, Y deux variables aléatoires d'images finies dans \mathbb{R} . On suppose que pour tout $k \in \mathbb{N}$, $E(X^k) = E(Y^k)$. Montrer que X et Y suivent la même loi.

Exercice 7 [Mines MP 2024] Soit $\alpha = e^{i\theta}$ un nombre complexe de module 1. Calculer $\prod_{k=0}^{n} (\alpha^{2^k} + \overline{\alpha}^{2^k})$.

Exercice 8 [Centrale MP 2024] 1. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^1 . On suppose que f admet un extremum en $a \in \mathbb{R}^n$. Rappeler la valeur de $\nabla f(a)$ (avec demonstration).

- 2. Soit $\theta \in [0, \pi]$. Soient A et B du cercle unité de \mathbb{R}^2 tels que $(\widehat{OA}, \widehat{OB}) = \theta$. Exprimer l'aire de la lunule constituée des points extérieurs au disque unité et intérieurs au disque de diamêtre [AB].
- 3. Soient A, B et C trois points du cercle unité tels que les trois angles $(\overrightarrow{OA}, \overrightarrow{OB})$, $(\overrightarrow{OB}, \overrightarrow{OC})$ et $(\overrightarrow{OC}, \overrightarrow{OA})$ soient dans $[0, \pi]$. Maximiser la somme des aires des trois lunules qu'ils définissent.

1. Montrer que toute rotation du plan est composée de deux symétries axiales. Exercice 9 [ENS MP 2024]

- 2. Montrer que toute permutation d'un ensemble fini non vide X est produit de deux éléments d'ordre au plus 2 du groupe des permutations de X.
- 3. Le résultat de la question précédente subsiste-t-il si *X* est infini?

Exercice 10 [ENS MP 2024] On étend naturellement la valuation 2-adique v_2 à \mathbb{Q}^* . Calculer $v_2(H_n)$, où H_n est la série harmonique.